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On convection velocities in turbulent shear flows 

By J.  A. B .  WILLS 
National Physical Laboratory, Teddington, Middlesex 

(Received 1 July 1963 and in revised form 28 May 1964) 

The problem of defining an effective velocity of convection for turbulent fluctua- 
tions in a shear flow is considered, and the definitions adopted by various workers 
are discussed. An experiment in the shear layer of a circular jet has shown that 
the usual definitions, based on peaks of the space-time correlations of the 
fluctuations, yield convection velocities whose magnitudes depend on the value 
of space or time separation chosen. An alternative approach shows that, by 
considering the turbulent field as a superposition of harmonic travelling waves, 
a wave-number/velocity spectrum can be defined that lends itself to the definition 
of a wave-number-dependent convection velocity and an overall convection 
velocity, both of which have real physical significance. An experimental tech- 
nique is described for obtaining the spectrum, and results are presented for one 
position in the shear layer of the jet. 

1. Introduction 
The idea of a velocity of convection of turbulent fluctuations stems originally 

from Taylor’s work on grid turbulence. Taylor (1938) pointed out that, if the 
turbulence level were low, the time variations in the velocity u observed at a fixed 
point in the flow would be approximately the same as those due to the convection 
of an unchanging spatial pattern past the point with the mean flow velocity U ,  
i.e. that u(x, t )  + u(x - Ut,  0 ) ,  where x and t represent distance measured down- 
stream in the mean flow direction and time. This hypothesis has become known 
as Taylor’s hypothesis, and Taylor (1938) showed experimentally that i t  was 
approximately true for the case of turbulence behind a grid in a wind tunnel. 

From a consideration of the full Navier-Stokes equations, Lin (1952) has 
shown that Taylor’s hypothesis is valid only if the turbulence level is low, viscous 
forces are negligible, and the mean shear is small. It is thus unreasonable to 
expect the hypothesis to apply throughout a boundary layer or in the mixing 
region of a jet. Nevertheless, the idea that slowly distorting eddies are convected 
downstream by the mean flow at a steady velocity (not necessarily equal to the 
mean velocity) is a useful one in the study of turbulent shear flows, and is particu- 
larly important in the study of aerodynamic noise and turbulence-induced 
structural vibrations. Various experiments have been conducted to determine 
effective convection velocities of turbulent fluctuations in shear flows, and such 
velocities have usually been defined in terms of the space-time covariance of 
velocity or pressure. Different workers have adopted their individual definitions 
according to the particular interest in the flow; only in the case of a frozen con- 
vected pattern, that of Taylor’s model, is the choice of convection velocity 
unambiguous. 
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2. Theoretical discussion 
Taylor’s hypothesis may be regarded as an assumption that the fluctuating 

velocity, written in the form u(z + U T ~ ,  t + TJ,  is independent of the value of T ~ .  

For a stationary and spatially homogeneous flow we can define the velocity 
covariance R(6,7) as the time mean of the product u(x, t )  u(z + 6, t + T ) ,  which 
by Taylor’s hypothesis is equal to the mean value of 

u(x,t)u(z+S+ U71,t+T+T1) = R ( 8 +  u71,7+?1). 

Thus, according to Taylor’s hypothesis, the covariance R(S+ Url,  7 + T ~ )  is also 
independent of the value of 71. 

It is interesting to note that the same invariance of the covariance 

can be derived from other simple assumptions that do not necessarily imply a 
frozen convected pattern. For instance, if we assume that the change in the 
turbulence pattern between the two measuring points is statistically independent 
of the instantaneous velocity fluctuation at, the first point, i.e. if 

iPu(x, t ) / W  P [ u ( x ,  t )  - u(z + 6, t + 7)] /a tm = 0 for some value of S/T, all n, m, 

(2.1) 

(2.2) 
or R ( ~ , T )  = R(S+ U T ~ ,  7 + T ~ )  as before. In  an x-homogeneous flow it is easily 
shown that equation (2.2) can be satisfied only by the frozen convected pattern, 
and in a flow in which the turbulent intensity 29(x, t )  decreases with increasing z 
the condition cannot be satisfied at all. In  the latter case, we might suppose 
instead that equation (2.1) holds for the velocities normalized by the r.m.s. 
intensities at the two points, when we obtain the result that the correlation 
coefficient R(S+ U T ~ ,  T + T ~ ) / [ u ~ ( ~ ,  t )  u2(x + 6, t)]* is independent of the value of 
rl .  It is then easily shown that the velocity change between the two points can 
only be a constant factor reduction, the factor being the ratio of the r.m.8. 
intensities at the two points.* 

Measurements of the covariance R(6,7) or of the correlation coefficient in 
turbulent shear flows show marked differences from this invariance to a uniform 
translation of axes, as shown in figures 1 and 2. Figure 1 shows lines of constant 
covariance in Taylor’s model in the (6,  plane, and the convection velocity U is 
given unambiguously by the constant slope (d6/d7)R=const. Figure 2 is an 
exaggerated version of the type of pattern measured by Willmarth & Wooldridge 
(1 962) for pressure fluctuations under a turbulent boundary layer. Here the slope 
of a line of constant covariance no longer has a constant value, but can take all 
values over a range of 6 or T .  The concentration of appreciable correlation into a 
fairly narrow band in the diagram indicates, however, that convection still plays 

* I am indebted to a referee for pointing out these alternative hypotheses leading to the 
invariance properties of the covariance or correlation coefficient. 

then for n = m = 0 we immediately have 

u2(x,  t )  = u(x,  t )  u(x+ 6, t + ~ )  for some S/T, 
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an important part in the flow and suggests possible definitions of a convection 
velocity. The covariance is measured experimentally by making surveys either 
with a series of constant space separations 6 and varying time delay 7, or vice 
versa. An obvious definition of convection velocity in the former case, for a 
particular separation, is the value of the ratio 617 which makes the covariance a 
maximum, i.e. the value S1/7,, where 7c satisfies 

aB(6,, 7 ) p  = 0. (2.3) 

FIGURE 1. Space-time covariance FIGURE 2. Practical space-time 
in Taylor’s model. covariance. 

Figure 2 shows that 6J7, is, to a fair approximation, independent of the value of 
a,, and in an earlier experiment Willmarth (1959) obtained for the convection 
velocity a value of S/T, which was 0.82 of the free-stream velocity. 

Alternatively, one can keep a fixed time delay T~ and vary the space separation, 
hence defining another convection velocity 6c/71, where 6, satisfies 

Figure 2 shows that this velocity, because of the spread of power over the 
(6,  plane, cannot be equal to that obtained with constant space separation, 
even if it is independent of the value of 71. The definition of equation (2.4) has 
since been adopted by most workers, including Willmarth & Wooldridge (1962), 
in view of the greater importance in most problems, and particularly in aero- 
dynamic noise, of the optimum time scale, rather than the optimum space scale 
(cf. Lighthill 1954). 

In  0 3, experiments are described in which the convection velocity so defined for 
the axial component of velocity was measured at a single value of the time delay 
7. The measurements were made in the shear layer of a circular jet at a station two 
diameters downstream from the nozzle, at various radial positions. The single 
value of 7 was chosen such that the maximum correlation coefficient at this value 
of 7 was close to 0.5. Such an approach readily gives an idea of the way in which 
convection velocity varies from point to point across a shear layer but, since the 
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velocity so defined is strictly a function of r ,  the significance of the velocity 
obtained a t  one value of r is uncertain. Earlier experiments (Ffowcs Williams 
1960) had, however, suggested that in this experimental situation the convection 
velocity is independent of r ,  at least for large values of r.  

Subsequently it was desired to compare the results of $ 3  with the convection 
velocity for the transverse component of velocity fluctuations in the jet, and the 
opportunity was taken to perform the measurements over a range of values of r .  
The experiments are described in $4, and it will be seen (figure 7) that the con- 
vection velocity at a fixed point in the flow can show variations of the order of 
30 % over the range of time delay covered in the experiment. 

This suggests that, if a single convection velocity is to be meaningful, a more 
exacting definition is needed, and in a private communication Ffowcs Williams 
pointed out that a suitable choice was the velocity satisfying the condition 

(Note that the previous condition may be written a{R(Ur,r)}/aU = 0.) The 
integral time scale is a maximum in the frame of reference moving down- 
stream with this velocity. An analogous definition has been used by Phillips 
(1957) to obtain the velocity of the reference point in which the integral time scale 
of a particular wave-number k is a maximum. We shall discuss this velocity, 
say U,(k), at a later stage in the paper. 

Although the velocity defined by equation (2.5) is relevant to the study of 
aerodynamic noise, it seems to have little significance as a convection velocity of 
fluid particles. Interestingly enough, though, it can be identified with an average 
of the velocities of eddies of all wave-numbers, a point which is readily demon- 
strated from a study of the relevant power spectral functions. Suppose that a 
stationary, homogeneous turbulent field along a line parallel to the mean flow is 
made up of many waves with one-dimensional wave-number k, moving with a 
range of velocities U .  The frequency w generated at a fixed point by a particular 
wave as it moves downstream will be equal to - kU. The turbulent field at the 
point has a cross-power spectrum M ( k ,  w )  which is the double Fourier transform 
of the covariance R(6, r )  (see table 1). We now define the related power spectral 
function 

W ( k ,  U )  = M(k,  - k U ) ,  

and show this to be a suitable basis for the definition of a convection velocity 
which is dependent on eddy size or, more strictly, is a function of the wave- 
number component k in the mean-flow direction. Just as the conventional energy 
spectrum M ( k ,  w )  represents the amplitude of an elementary perturbation, 
harmonic in space and time, so the modified spectral function W ( k ,  U )  represents 
the amplitude of an elementary perturbation harmonic in space and moving with 
a velocity U ,  W(k,  U )  eik(z-UO. The real stationary, homogeneous fluctuating 
field may be regarded as a superposition of an infinite set of either of these 
elementary systems, but the second approach based on W(k,  U )  is particularly 
suitable for the analysis of convected phenomena, since the real field can usefully 
be regarded as a superposition of many uniformly convected non-dispersive 
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wave systems. For each element the velocity U has a well-defined meaning and is 
equal to both the phase and-group velocities of the elementary wave. 

We can define a dominant convection velocity at a particular wave-number, 
U,(k) ,  as the velocity that makes the spectral function W ( k ,  U )  a maximum, i.e. 

pw:, ~ ) / ~ U } V = V , ( k )  = 0. (2.7) 

This definition of UJk)  is identical with that used by Phillips (1957) in his study 
of water waves generated by a turbulent wind, but is here restricted to one space 
dimension. Phillips defined his convection velocity to be that of a moving frame 

of reference in which the integral time scale P(k,7),dT was greatest (see 

table l), which in one dimension is also the condition for the maximum of W(k,  U ) .  
smm 

J -03 
m 

E”(k T ) ,  exp (ik . UT) (2n)-l R(S, 7) exp (ik . S) dS 
J --m 

TABLE 1. Table of spectra. 

Now, just as the frequency spectrum M ( o )  is derived from the more general 
function M ( k ,  w )  by the integral 

M ( w )  = [“ M ( k , o ) d k ,  (2.8) 
J --oo 

so we can define a spectral function W (  U )  by 

W ( U )  =sm W ( k ,  U ) d k .  (2.9) 
-m 

Furthermore, just as the peak value of M ( w )  occurs at a characteristic fre- 
quency, so the velocity at which the spectrum W (  U )  peaks will be an important 
characteristic velocity. We have already defined the velocity U ( k )  as the velocity 
of maximum energy at a particular wave-number (equation (2.7)), so we now 
define the overall convection velocity U,  as the value at which the peak of the 
integrated spectrum W (  U )  peaks, i.e. 

(2.10) 
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But on making use of the identity 

jw W ( k ,  U ) d k  = (zn)-qW R(U7,7)d7, (2.11) 

we see that our definition of the overall convection velocity U, is the same as that 
based on the maximum integral time scale of R(6, 7 ) ,  equation (2.5). Thus this 
treatment of convection velocity through properties of wave-number spectra 
provides a unified approach of which the particular definitions adopted by 
different workers are special cases. 

The property of greatest interest in the present study is the wave-number/ 
velocity spectral density W ( k ,  U ) ,  and this can be obtained experimentally from 
a double Fourier transform of the covariance R(6,7). Since R(6, T) can be mea- 
sured easily with modern equipment, this is an obvious method of obtaining the 
spectrum W(k,  U ) .  An alternative method, having several experimental ad- 
vantages, is to measure the spatial covariance with zero time delay, at a frequency 
o, denoted by R,(S). This function is the real part of the single Fourier transform 
of R(6,7) with respect to T, and is thus necessarily an even function of w .  If we 
now transform R,(S) with respect to 6, we obtain the (real) sum 

- W  - W  

(2.12) 

The method thus provides a measure of the total power at positive and negative 
frequencies, or rather at positive and negative velocities, since in homogeneous, 
stationary flow M ( k ,  w )  = M (  - k, - w ) .  The simple measurement of RJ6) with 
narrow band filters does not allow the separation of the positive and negative 
velocity components, but in flows where the convection is strong there will be 
little energy at negative velocities, so that 

W ( k ,  - o / k )  % 2(2n)-1/om R,(S) cos k6d6. (2.13) 

The effect of this approximation is that there will exist ranges of wave-number 
and velocity where the accuracy of W ( k ,  U) cannot be guaranteed, and in these 
regions the true spectrum could be obtained by various methods, perhaps the 
simplest of which involves measuring R,,(S), the spatial covariance of filtered 
signals with a relative phase shift of Qn at frequency w .  It is then easily shown 
that 

W ( k ,  - w / k )  = 2(2n)-l {R,(6) cosks+Ri,(6)sinks}d6. (2.14) 

However, to obtain the velocity UJk)  one needs measurements of W(k,  U )  only 
in the vicinity of its maximum, so that generally the approximate relation (2.13) 
can be used without serious error. 

Although strictly only one signal need be filtered to obtain R,(S), in practice it 
is essential to filter both with identical filters, because of the inevitable large 
phase shifts through the pass band of the filter. The use of two filters also improves 
the rejection of frequencies outside the pass band and limits the signal amplitude 

J O W  
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fed to the multiplier, allowing greater accuracy and an improved signal-to-noise 
ratio. Experimentally, the elimination of the usual tape- or drum-time-delay 
unit has a considerable advantage, since the overall signal-to-noise ratio and 
frequency response of the measurements will generally be limited by this part 
of the equipment. 

An experiment in which the spectrum W ( k ,  U )  was measured by the filtered 
space-correlation technique is described in 3 6, for one position in the shear layer 
of a circular jet. 

3. Experimental equipment 
The experiments were performed in a circular jet of 2 in. diameter with an 

exit velocity of 330 ft./sec. The hot wires were of 0.0002 in. diameter and about 
0-02 in. length, and were made by etching away the centre length of the copper 
coating from a copper-plated tungsten wire soldered to the ends of the hot-wire 
holder. The technique is described in greater detail by Bradshaw & Johnson 
(1963). These holders were mounted on a traversing gear that allowed one wire to 
be fixed at any point in the flow, and the other to be traversed in a direction 
parallel to the jet axis by a motor drive. The wires were operated a t  constant 
temperature with a resistance ratio R/Ra = 2, corresponding to a wire tempera- 
ture of about 250 "C, by Disa model 55 A 01 hot-wire anemometers, and the 
output signals from the anemometers were fed to single-valve linearizers having 
a response adjusted to match the hot-wire non-linear response and give a voltage 
signal directly proportional to velocity. The linearizers in turn fed a four-head 
time-delay tape recorder (Data Recording model 480/100 using F.M. recording), 
and the output signals, now with a relative time delay, could be passed to a time- 
division multiplier and then integrated for a fixed time to give a signal propor- 
tional to R(6,7). The linearizers, integrator, timer and multiplier are described 
in detail by Bradshaw & Johnson (1963). 

For the measurements of transverse velocity fluctuations, crossed-wire probes 
were used, requiring the use of two more Disa anemometers and linearizers, and 
two difference amplifiers. For the measurements described in 6 the signals from 
two linearized anemometers were fed into two Bruel and Kjaer model 2111 
audio-frequency spectrometers, giving filtered signals with a band-width of 
+octave which were then multiplied and integrated as in the earlier experiment. 
The Fourier transform to give the spectrum W ( k ,  U )  was evaluated using the 
Deuce digital computer at the NPL. 

4. Measurements of convection velocity of axial components 
The fixed wire was positioned two diameters downstream of the jet nozzle and 

half a diameter from the jet axis, roughly in the centre of the shear layer. The 
moving wire could be traversed in the downstream direction (see figure 3). The 
signal from the moving wire was delayed in time by an amount 0.5370/Um,,, and 
the covariance of the axial velocity component was measured for a range of wire 
separation 6 that covered the covariance maximum. The convection velocity U,, 
was obtained as the value of the ratio S/r that maximized R(6, r )  at the selected 
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Fixed wire 
/ Moving wire 

,/. / 

FIGURE 3. Schematic jet arrangement. 

Wire separation SJD 
FIGURE 4. Longitudinal velocity spacetime correlation. 
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FIGURE 5. Variation of convection velocity across shear layer at xJD = 2. 

value of T ,  which was chosen to give a peak correlation coefficient of about 0.5. 
The experiment was repeated for a range of radial positions to give the results 
shown in figure 4, and the distribution of convection velocity across the shear 
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1 1 1 Fixed wire at x/D = 2 

I I 
0.2 0.3 0.4 0.5 0.6 0.2; 

0.1 
Wire separation S/D 

Wire separation S/D 

Wire separation 810 

FIGURE 6. Radial velocity space-time correlation a t  (a)  y /D  = 0.4, ( b )  y /D = 0.5, and 
(c)  y / D  = 0.7. 
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layer is shown in figure 5. The results are substantially the same as those obtained 
by Davies, Fisher & Barratt (1963). The convection velocity defined on this basis 
appears to change much less across the shear layer than does the mean velocity, 
which is shown for comparison on the same figure, and this suggests that in the 
lower-intensity regions at the extremities of the curve one is observing in part the 
field of the turbulence in the high-intensity region, travelling at about the mean 
velocity in that region. 

5. Measurements of convection velocity of radial component 
An experiment similar to that of § 4 was performed, using crossed-wire probes 

with wires at approximately 5 45" to the jet axis and lying in the (x, 9)-plane 
two diameters downstream of the jet nozzle. The two radial-component signals 

Time delay 7 (msec) 

FIGURE 7. Radial component convection velocity. 

were processed to give the convection velocity, defined as in 9 4 as the value of the 
ratio S/T that maximized R(6, T ) ,  but in this case measurements were made over 
a range of values of r ,  and for only three values of y/D, 0-4,0.5 and 0-7. The results 
are shown in figure 6, and the variation of convection velocity with time delay 
and radial position is shown in figure 7. An average convection velocity, given by 
the slope of the best straight line through the optimum values of 6 and T ,  is also 
shown in figure 5 for the three positions where it was measured, and exhibits even 
less variation with radial position than does the axial-component convection 
velocity. Recent measurements by Bradshaw, Ferriss & Johnson (1963) have 
indicated that the radial-component lateral scale is roughly twice that of the 
axial-component, so that a larger region of approximately constant convection 
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velocity might be expected if the observed velocity perturbations are in part the 
induced field of powerful eddies in the centre of the shear flow. 

Perhaps the more important result of this experiment, however, is that the 
local convection velocity is not independent of time delay 7, particularly at the 
extremities of the shear layer, and this result suggested the experiment of $6. 

6. Measurements of U,(k) 
Two axial-component wires were again operated at a resistance ratio RIRa = 2 

by two Disa anemometers with linearizers. The outputs were filtered by two 
Briiel and Kjaer audio spectrometers whose outputs were fed to the multiplier 
and integrator. Both filters were initially set to a centre frequency of 400c/s, 
with a bandwidth of &-octave. As before, the fixed wire was positioned two 
diameters downstream of the jet nozzle and half a diameter from the jet axis, 
and the moving wire was traversed upstream and downstream of this position to 
cover the range of significant correlation. In  the case of the 400 cis band, this 
range extended from the jet nozzle to a point eight diameters downstream. The 
experiment was repeated at centre frequencies of 800, 1600, 3150, 6300 and 
12,500 c/s. A typical correlation curve is shown in figure 8. For experimental 
convenience values of the correlation coefficient R,(S)/(uZ(x) u2(x + &))a were 
measured, and the failure of this quantity to reach unity for zero separation in 

______ 

figure 8 arises from the necessity of displacing the two wires slightly in the 
tangential direction to avoid wake interference by the upstream wire. This 
difficulty does not arise at lower frequency where the effective lateral scale is 
greater. Curves of R,(S) ws S were constructed, and ordinates from these curves 
were used in a standard programme to compute the Fourier cosine transform. 
Figure 9 is the computed transform of the curve shown in figure 8, and is typical 
of these used to generate the spectrum W ( k ,  V )  shown in figure 10. Since the 
velocity U is defined as the ratio - w/k ,  the constant-frequency lines on which the 
experimental points lie appear as hyperbolae. Also shown in figure 10 are the 
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I I I I I 1 1 1 1  I I I I I l l l l  
10 100 1000 

Wave-number lc (ft.-l) 
FIGURE 9. Fourier (cosine) transform of figure 8. 

0 100 200 300 400 500 600 
U = w/k  (ft. sec) 

FIGURE 10. The spectrum W(k,  U )  at x /D  = 2, y /D  = 0.5. 
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bandwith limits of the 6300c/s filter, and this can be used to estimate the 
inaccuracy of the results arising from the finite bandwith of the filters. The usual 
correction to filtered space correlation measurements involves invoking Taylor’s 
hypothesis to convert the filtered autocorrelation function into the corresponding 
space correlation, and this correction factor is shown in figure 8. However, i t  is 
easily shown (Wills 1963) that the true effect of an ideal slot filter is to give a 
mean reading of the energy over the filter bandwith at the particular wave- 
number concerned; i.e. the measured spectrum is given by 

O+A0 

0 - A 0  
W y k ,  - w / k )  = j W(k,  -up)  dw. (6.1) 

The main inaccuracy in the measured spectrum will occur at high velocity where 
the constant-energy lines become almost parallel to constant-frequency lines, 
but in the high-intensity region the effect of the filter is restricted to a levelling- 
off of the spectrum peak, and since the pattern is roughly symmetrical either side 
of the peak there will be little error in the value of U,(k) obtained. 

As the spectrum W ( k ,  V )  is not a familiar one, it is perhaps worth illustrating 
how it is related to spectra according to more usual definitions. Figure 11 shows 
two constant-energy contours of the cross-power spectrum M(k,  w )  in convected 

FIGURE 11. The spectrum M(k,  w). 

turbulence, and the main energy is concentrated around a convection-velocity 
line given by the ratio -w/k .  The wave-number/velocity spectrum J(k,  U )  
suggested by Ffowcs Williams (1961) to be relevant to the study of convected 
turbulence is related to this by the formula (see table 1) 

J(k ,  U )  = kM(k,  - k U ) .  (6.2) 

The spectrum depicted by the contours of figure 11 would transform to give the 
constant energy contours of J ( k ,  U )  shown in figure 12, and the main energy is 
again seen to be concentrated around a particular value of velocity. Both the 
spectra M(E, w )  and J(k ,  V )  can be integrated over their respective spaces to give 
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I 
U 

FIGURE 12. The spectrum J ( k ,  U ) .  

the turbulent intensity 2, but the spectrum J(k ,  U )  appears to have less signi- 
ficance in the convection-velocity study than the closely related function 

W(k,  U )  = k-lJ(k,  U )  
which is the subject of the present investigation, and which lends itself readily to 
the definition of the convection velocity U,(k) and the overall convection 
velocity U,. 

The contours of figure 11 are re-plotted in figure 13 to give contours of the 
spectrum W(k,  U ) ,  and it can be seen that even at very high velocities there will 
be appreciable energy at small wave-numbers. The turbulent field has been 
regarded as an assemblage of undamped harmonic waves, which it is well known 
(see, for instance, Phillips 1960) can radiate no sound unless the wave velocity is 

FIGURE 13. The spectrum W(k,  U) .  

supersonic with respect to the external field. Thus the energy in the supersonic 
region of figure 13 is the only part that contributes to the sound radiation from 
the flow, and a typical wave-number in this region is much smaller than that in 
the region of maximum intensity. 
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The experimental results of figure 10 show that maximum intensity to occur at 
a wave-number of about 25 ft.-l, corresponding to a wavelength in the axial 
direction of 3 in. The convection velocity U,(k) at this wave-number is 205 ft./sec, 
or 0.62 times the jet exit velocity. This velocity is also approximately equal to the 
overall convection velocity U,, and slightly less than the mean velocity at this 
radial position. Even at the peak-energy wave-number, only half the energy lies 
within the velocity range 150-250 ft./sec, so that the assumption sometimes made 
that wave-number and frequency are related by a single velocity is unlikely to 
give useful results, except perhaps when used to indicate orders of magnitude. 
At wave-numbers remote from the peak-energy position, the spread of energy 
over velocity is even greater. 

The value of U,(k) away from the peak-energy position shows a slight increase 
with increasing wave-number, but the experimental difficulties of obtaining 
accurate results at high wave-number precludes the possibility of giving an 
accurate empirical value to U,(k) at present. It is not yet clear whether the 
variation is a dynamical effect of the local motion, or the impressed field of faster- 
moving eddies nearer the jet axis. 

7. Conclusions 
The experiments of $4 and those of several other workers (e.g. Willmarth & 

Wooldridge 1962) indicate that, in some turbulent shear flows of practicalinterest, 
the usual simple definitions of a single convection velocity of the fluctuations lead 
to an ambiguous result. It is evident that we must either adopt a more refined 
definition of a single velocity, or allow the convection velocity to be a function of 
at least one parameter. If we choose the latter course, the possible variables are the 
space or time separation, or the transformed variables wave-number or frequency. 
From the point of view ofproblems where the turbulence acts as a forcing function 
for some motion, as in water-wave generation or aerodynamic noise production, 
the obvious choice of variables is wave-number because of the identification of 
each wave-number with a particular velocity. The approach described here leads 
naturally from the distribution of turbulent energy over wave-number and 
velocity to the convection velocity U,(k), and thence to an integral convection 
velocity U, that eliminates the ambiguity of the usual definitions. 
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